博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
pickle和json模块
阅读量:6955 次
发布时间:2019-06-27

本文共 54456 字,大约阅读时间需要 181 分钟。

json模块

    json模块是实现序列化和反序列化的,主要用户不同程序之间的数据交换,首先来看一下:

    dumps()序列化

import json'''json模块是实现序列化和反序列话功能的'''users = ["alex","tom","wupeiqi","sb","耿长学"]mes = json.dumps(users)    #实例化,并打印print(mes) 运行结果如下: ["alex", "tom", "wupeiqi", "sb", "\u803f\u957f\u5b66"]

    从上面可以看出,dumps其实是生成一个序列化的实例,这个后面会和dump进行区分,而且汉字非英文转化成的是字节码。

    loads()反序列化

import json'''json模块是实现序列化和反序列话功能的'''users = ["alex","tom","wupeiqi","sb","耿长学"]mes = json.dumps(users)    #实例化,并打印print("序列化:",mes)data = json.loads(mes)print("反序列化:",data) 运行结果如下: 序列化: ["alex", "tom", "wupeiqi", "sb", "\u803f\u957f\u5b66"] 反序列化: ['alex', 'tom', 'wupeiqi', 'sb', '耿长学']

    上面dumps()和loads()序列化和反序列化是在程序之间交互,即没有通过文件,只是以json.dumps()序列化一个实例,然后接收之后json.loads()进行反序列化,依次实现程序之间的交互。那么如何在文件中交互呢?

    文件中的交互:

import json'''json模块是实现序列化和反序列话功能的'''users = ["alex","tom","wupeiqi","sb","耿长学"]mes = json.dumps(users)    #实例化,并打印'''把mes序列化实例写入文件'''with open("users",'w+') as fw:    fw.write(mes)

    上面代码中,我们把序列化的实例写入到文件中,使用json.dumps()生成实例,fw.write()写入文件,需要通过文件的write()写入。

    文件反序列化:

import jsonwith open('users','r+') as fr:    mess = json.loads(fr.read())    print(mess)运行结果如下:['alex', 'tom', 'wupeiqi', 'sb', '耿长学']

    上面文件反序列化过程中,首先要把文件中的内容读取出来,因为是使用write()写进去的,因此要read()出来,然后再进行反序列化,生成一个实例。

    下面我们来看看load()和dump()实现序列化和反序列化:

    dump()序列化

import jsonusers = {
"alex":"sb","wupeiqi":666,"耿长学":6969}with open("users","w+") as fw: json.dump(users,fw)

    从上面可以看出,json.dump()是直接把实例化的信息序列化到指定文件中,不需要write()来写入,直接可以自己来写入,而dumps()只是序列化成一个实例,还需要自己write()到文件中。

    load()反序列化

import jsonwith open('users','r+') as fr:    users = json.load(fr)    print(users)运行结果如下:{
'alex': 'sb', '耿长学': 6969, 'wupeiqi': 666}

    load()反序列化不需要读取之后才反序列化,直接可以从文件反序列化,因为是dump()进去的。

    总结:

    从上面dumps()、loads()和dump()、load()序列化和反序列化可以看出,dumps()是序列化生成一个实例,loads()是读取写进去的实例,dumps()和loads()主要用于不同程序或者接口之间的数据交换传输,而dump()和load()更适合于文件级别之间的读取和写入,两者之间还是有侧重点的。

    这个不是说两者功能一样,用法不同,其实设计的时候侧重方向就是不一样的。

    json源代码

r"""JSON (JavaScript Object Notation) 
is a subset ofJavaScript syntax (ECMA-262 3rd edition) used as a lightweight datainterchange format.:mod:`json` exposes an API familiar to users of the standard library:mod:`marshal` and :mod:`pickle` modules. It is derived from aversion of the externally maintained simplejson library.Encoding basic Python object hierarchies:: >>> import json >>> json.dumps(['foo', {
'bar': ('baz', None, 1.0, 2)}]) '["foo", {"bar": ["baz", null, 1.0, 2]}]' >>> print(json.dumps("\"foo\bar")) "\"foo\bar" >>> print(json.dumps('\u1234')) "\u1234" >>> print(json.dumps('\\')) "\\" >>> print(json.dumps({
"c": 0, "b": 0, "a": 0}, sort_keys=True)) {
"a": 0, "b": 0, "c": 0} >>> from io import StringIO >>> io = StringIO() >>> json.dump(['streaming API'], io) >>> io.getvalue() '["streaming API"]'Compact encoding:: >>> import json >>> from collections import OrderedDict >>> mydict = OrderedDict([('4', 5), ('6', 7)]) >>> json.dumps([1,2,3,mydict], separators=(',', ':')) '[1,2,3,{"4":5,"6":7}]'Pretty printing:: >>> import json >>> print(json.dumps({
'4': 5, '6': 7}, sort_keys=True, indent=4)) { "4": 5, "6": 7 }Decoding JSON:: >>> import json >>> obj = ['foo', {
'bar': ['baz', None, 1.0, 2]}] >>> json.loads('["foo", {"bar":["baz", null, 1.0, 2]}]') == obj True >>> json.loads('"\\"foo\\bar"') == '"foo\x08ar' True >>> from io import StringIO >>> io = StringIO('["streaming API"]') >>> json.load(io)[0] == 'streaming API' TrueSpecializing JSON object decoding:: >>> import json >>> def as_complex(dct): ... if '__complex__' in dct: ... return complex(dct['real'], dct['imag']) ... return dct ... >>> json.loads('{"__complex__": true, "real": 1, "imag": 2}', ... object_hook=as_complex) (1+2j) >>> from decimal import Decimal >>> json.loads('1.1', parse_float=Decimal) == Decimal('1.1') TrueSpecializing JSON object encoding:: >>> import json >>> def encode_complex(obj): ... if isinstance(obj, complex): ... return [obj.real, obj.imag] ... raise TypeError(repr(o) + " is not JSON serializable") ... >>> json.dumps(2 + 1j, default=encode_complex) '[2.0, 1.0]' >>> json.JSONEncoder(default=encode_complex).encode(2 + 1j) '[2.0, 1.0]' >>> ''.join(json.JSONEncoder(default=encode_complex).iterencode(2 + 1j)) '[2.0, 1.0]'Using json.tool from the shell to validate and pretty-print:: $ echo '{"json":"obj"}' | python -m json.tool { "json": "obj" } $ echo '{ 1.2:3.4}' | python -m json.tool Expecting property name enclosed in double quotes: line 1 column 3 (char 2)"""__version__ = '2.0.9'__all__ = [ 'dump', 'dumps', 'load', 'loads', 'JSONDecoder', 'JSONDecodeError', 'JSONEncoder',]__author__ = 'Bob Ippolito
'from .decoder import JSONDecoder, JSONDecodeErrorfrom .encoder import JSONEncoder_default_encoder = JSONEncoder( skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, indent=None, separators=None, default=None,)def dump(obj, fp, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw): """Serialize ``obj`` as a JSON formatted stream to ``fp`` (a ``.write()``-supporting file-like object). If ``skipkeys`` is true then ``dict`` keys that are not basic types (``str``, ``int``, ``float``, ``bool``, ``None``) will be skipped instead of raising a ``TypeError``. If ``ensure_ascii`` is false, then the strings written to ``fp`` can contain non-ASCII characters if they appear in strings contained in ``obj``. Otherwise, all such characters are escaped in JSON strings. If ``check_circular`` is false, then the circular reference check for container types will be skipped and a circular reference will result in an ``OverflowError`` (or worse). If ``allow_nan`` is false, then it will be a ``ValueError`` to serialize out of range ``float`` values (``nan``, ``inf``, ``-inf``) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (``NaN``, ``Infinity``, ``-Infinity``). If ``indent`` is a non-negative integer, then JSON array elements and object members will be pretty-printed with that indent level. An indent level of 0 will only insert newlines. ``None`` is the most compact representation. If specified, ``separators`` should be an ``(item_separator, key_separator)`` tuple. The default is ``(', ', ': ')`` if *indent* is ``None`` and ``(',', ': ')`` otherwise. To get the most compact JSON representation, you should specify ``(',', ':')`` to eliminate whitespace. ``default(obj)`` is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError. If *sort_keys* is ``True`` (default: ``False``), then the output of dictionaries will be sorted by key. To use a custom ``JSONEncoder`` subclass (e.g. one that overrides the ``.default()`` method to serialize additional types), specify it with the ``cls`` kwarg; otherwise ``JSONEncoder`` is used. """ # cached encoder if (not skipkeys and ensure_ascii and check_circular and allow_nan and cls is None and indent is None and separators is None and default is None and not sort_keys and not kw): iterable = _default_encoder.iterencode(obj) else: if cls is None: cls = JSONEncoder iterable = cls(skipkeys=skipkeys, ensure_ascii=ensure_ascii, check_circular=check_circular, allow_nan=allow_nan, indent=indent, separators=separators, default=default, sort_keys=sort_keys, **kw).iterencode(obj) # could accelerate with writelines in some versions of Python, at # a debuggability cost for chunk in iterable: fp.write(chunk)def dumps(obj, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw): """Serialize ``obj`` to a JSON formatted ``str``. If ``skipkeys`` is true then ``dict`` keys that are not basic types (``str``, ``int``, ``float``, ``bool``, ``None``) will be skipped instead of raising a ``TypeError``. If ``ensure_ascii`` is false, then the return value can contain non-ASCII characters if they appear in strings contained in ``obj``. Otherwise, all such characters are escaped in JSON strings. If ``check_circular`` is false, then the circular reference check for container types will be skipped and a circular reference will result in an ``OverflowError`` (or worse). If ``allow_nan`` is false, then it will be a ``ValueError`` to serialize out of range ``float`` values (``nan``, ``inf``, ``-inf``) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (``NaN``, ``Infinity``, ``-Infinity``). If ``indent`` is a non-negative integer, then JSON array elements and object members will be pretty-printed with that indent level. An indent level of 0 will only insert newlines. ``None`` is the most compact representation. If specified, ``separators`` should be an ``(item_separator, key_separator)`` tuple. The default is ``(', ', ': ')`` if *indent* is ``None`` and ``(',', ': ')`` otherwise. To get the most compact JSON representation, you should specify ``(',', ':')`` to eliminate whitespace. ``default(obj)`` is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError. If *sort_keys* is ``True`` (default: ``False``), then the output of dictionaries will be sorted by key. To use a custom ``JSONEncoder`` subclass (e.g. one that overrides the ``.default()`` method to serialize additional types), specify it with the ``cls`` kwarg; otherwise ``JSONEncoder`` is used. """ # cached encoder if (not skipkeys and ensure_ascii and check_circular and allow_nan and cls is None and indent is None and separators is None and default is None and not sort_keys and not kw): return _default_encoder.encode(obj) if cls is None: cls = JSONEncoder return cls( skipkeys=skipkeys, ensure_ascii=ensure_ascii, check_circular=check_circular, allow_nan=allow_nan, indent=indent, separators=separators, default=default, sort_keys=sort_keys, **kw).encode(obj)_default_decoder = JSONDecoder(object_hook=None, object_pairs_hook=None)def load(fp, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw): """Deserialize ``fp`` (a ``.read()``-supporting file-like object containing a JSON document) to a Python object. ``object_hook`` is an optional function that will be called with the result of any object literal decode (a ``dict``). The return value of ``object_hook`` will be used instead of the ``dict``. This feature can be used to implement custom decoders (e.g. JSON-RPC class hinting). ``object_pairs_hook`` is an optional function that will be called with the result of any object literal decoded with an ordered list of pairs. The return value of ``object_pairs_hook`` will be used instead of the ``dict``. This feature can be used to implement custom decoders that rely on the order that the key and value pairs are decoded (for example, collections.OrderedDict will remember the order of insertion). If ``object_hook`` is also defined, the ``object_pairs_hook`` takes priority. To use a custom ``JSONDecoder`` subclass, specify it with the ``cls`` kwarg; otherwise ``JSONDecoder`` is used. """ return loads(fp.read(), cls=cls, object_hook=object_hook, parse_float=parse_float, parse_int=parse_int, parse_constant=parse_constant, object_pairs_hook=object_pairs_hook, **kw)def loads(s, encoding=None, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw): """Deserialize ``s`` (a ``str`` instance containing a JSON document) to a Python object. ``object_hook`` is an optional function that will be called with the result of any object literal decode (a ``dict``). The return value of ``object_hook`` will be used instead of the ``dict``. This feature can be used to implement custom decoders (e.g. JSON-RPC class hinting). ``object_pairs_hook`` is an optional function that will be called with the result of any object literal decoded with an ordered list of pairs. The return value of ``object_pairs_hook`` will be used instead of the ``dict``. This feature can be used to implement custom decoders that rely on the order that the key and value pairs are decoded (for example, collections.OrderedDict will remember the order of insertion). If ``object_hook`` is also defined, the ``object_pairs_hook`` takes priority. ``parse_float``, if specified, will be called with the string of every JSON float to be decoded. By default this is equivalent to float(num_str). This can be used to use another datatype or parser for JSON floats (e.g. decimal.Decimal). ``parse_int``, if specified, will be called with the string of every JSON int to be decoded. By default this is equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers (e.g. float). ``parse_constant``, if specified, will be called with one of the following strings: -Infinity, Infinity, NaN, null, true, false. This can be used to raise an exception if invalid JSON numbers are encountered. To use a custom ``JSONDecoder`` subclass, specify it with the ``cls`` kwarg; otherwise ``JSONDecoder`` is used. The ``encoding`` argument is ignored and deprecated. """ if not isinstance(s, str): raise TypeError('the JSON object must be str, not {!r}'.format( s.__class__.__name__)) if s.startswith(u'\ufeff'): raise JSONDecodeError("Unexpected UTF-8 BOM (decode using utf-8-sig)", s, 0) if (cls is None and object_hook is None and parse_int is None and parse_float is None and parse_constant is None and object_pairs_hook is None and not kw): return _default_decoder.decode(s) if cls is None: cls = JSONDecoder if object_hook is not None: kw['object_hook'] = object_hook if object_pairs_hook is not None: kw['object_pairs_hook'] = object_pairs_hook if parse_float is not None: kw['parse_float'] = parse_float if parse_int is not None: kw['parse_int'] = parse_int if parse_constant is not None: kw['parse_constant'] = parse_constant return cls(**kw).decode(s)

    pickle源代码

"""Create portable serialized representations of Python objects.See module copyreg for a mechanism for registering custom picklers.See module pickletools source for extensive comments.Classes:    Pickler    UnpicklerFunctions:    dump(object, file)    dumps(object) -> string    load(file) -> object    loads(string) -> objectMisc variables:    __version__    format_version    compatible_formats"""from types import FunctionTypefrom copyreg import dispatch_tablefrom copyreg import _extension_registry, _inverted_registry, _extension_cachefrom itertools import isliceimport sysfrom sys import maxsizefrom struct import pack, unpackimport reimport ioimport codecsimport _compat_pickle__all__ = ["PickleError", "PicklingError", "UnpicklingError", "Pickler",           "Unpickler", "dump", "dumps", "load", "loads"]# Shortcut for use in isinstance testingbytes_types = (bytes, bytearray)# These are purely informational; no code uses these.format_version = "4.0"                  # File format version we writecompatible_formats = ["1.0",            # Original protocol 0                      "1.1",            # Protocol 0 with INST added                      "1.2",            # Original protocol 1                      "1.3",            # Protocol 1 with BINFLOAT added                      "2.0",            # Protocol 2                      "3.0",            # Protocol 3                      "4.0",            # Protocol 4                      ]                 # Old format versions we can read# This is the highest protocol number we know how to read.HIGHEST_PROTOCOL = 4# The protocol we write by default.  May be less than HIGHEST_PROTOCOL.# We intentionally write a protocol that Python 2.x cannot read;# there are too many issues with that.DEFAULT_PROTOCOL = 3class PickleError(Exception):    """A common base class for the other pickling exceptions."""    passclass PicklingError(PickleError):    """This exception is raised when an unpicklable object is passed to the    dump() method.    """    passclass UnpicklingError(PickleError):    """This exception is raised when there is a problem unpickling an object,    such as a security violation.    Note that other exceptions may also be raised during unpickling, including    (but not necessarily limited to) AttributeError, EOFError, ImportError,    and IndexError.    """    pass# An instance of _Stop is raised by Unpickler.load_stop() in response to# the STOP opcode, passing the object that is the result of unpickling.class _Stop(Exception):    def __init__(self, value):        self.value = value# Jython has PyStringMap; it's a dict subclass with string keystry:    from org.python.core import PyStringMapexcept ImportError:    PyStringMap = None# Pickle opcodes.  See pickletools.py for extensive docs.  The listing# here is in kind-of alphabetical order of 1-character pickle code.# pickletools groups them by purpose.MARK           = b'('   # push special markobject on stackSTOP           = b'.'   # every pickle ends with STOPPOP            = b'0'   # discard topmost stack itemPOP_MARK       = b'1'   # discard stack top through topmost markobjectDUP            = b'2'   # duplicate top stack itemFLOAT          = b'F'   # push float object; decimal string argumentINT            = b'I'   # push integer or bool; decimal string argumentBININT         = b'J'   # push four-byte signed intBININT1        = b'K'   # push 1-byte unsigned intLONG           = b'L'   # push long; decimal string argumentBININT2        = b'M'   # push 2-byte unsigned intNONE           = b'N'   # push NonePERSID         = b'P'   # push persistent object; id is taken from string argBINPERSID      = b'Q'   #  "       "         "  ;  "  "   "     "  stackREDUCE         = b'R'   # apply callable to argtuple, both on stackSTRING         = b'S'   # push string; NL-terminated string argumentBINSTRING      = b'T'   # push string; counted binary string argumentSHORT_BINSTRING= b'U'   #  "     "   ;    "      "       "      " < 256 bytesUNICODE        = b'V'   # push Unicode string; raw-unicode-escaped'd argumentBINUNICODE     = b'X'   #   "     "       "  ; counted UTF-8 string argumentAPPEND         = b'a'   # append stack top to list below itBUILD          = b'b'   # call __setstate__ or __dict__.update()GLOBAL         = b'c'   # push self.find_class(modname, name); 2 string argsDICT           = b'd'   # build a dict from stack itemsEMPTY_DICT     = b'}'   # push empty dictAPPENDS        = b'e'   # extend list on stack by topmost stack sliceGET            = b'g'   # push item from memo on stack; index is string argBINGET         = b'h'   #   "    "    "    "   "   "  ;   "    " 1-byte argINST           = b'i'   # build & push class instanceLONG_BINGET    = b'j'   # push item from memo on stack; index is 4-byte argLIST           = b'l'   # build list from topmost stack itemsEMPTY_LIST     = b']'   # push empty listOBJ            = b'o'   # build & push class instancePUT            = b'p'   # store stack top in memo; index is string argBINPUT         = b'q'   #   "     "    "   "   " ;   "    " 1-byte argLONG_BINPUT    = b'r'   #   "     "    "   "   " ;   "    " 4-byte argSETITEM        = b's'   # add key+value pair to dictTUPLE          = b't'   # build tuple from topmost stack itemsEMPTY_TUPLE    = b')'   # push empty tupleSETITEMS       = b'u'   # modify dict by adding topmost key+value pairsBINFLOAT       = b'G'   # push float; arg is 8-byte float encodingTRUE           = b'I01\n'  # not an opcode; see INT docs in pickletools.pyFALSE          = b'I00\n'  # not an opcode; see INT docs in pickletools.py# Protocol 2PROTO          = b'\x80'  # identify pickle protocolNEWOBJ         = b'\x81'  # build object by applying cls.__new__ to argtupleEXT1           = b'\x82'  # push object from extension registry; 1-byte indexEXT2           = b'\x83'  # ditto, but 2-byte indexEXT4           = b'\x84'  # ditto, but 4-byte indexTUPLE1         = b'\x85'  # build 1-tuple from stack topTUPLE2         = b'\x86'  # build 2-tuple from two topmost stack itemsTUPLE3         = b'\x87'  # build 3-tuple from three topmost stack itemsNEWTRUE        = b'\x88'  # push TrueNEWFALSE       = b'\x89'  # push FalseLONG1          = b'\x8a'  # push long from < 256 bytesLONG4          = b'\x8b'  # push really big long_tuplesize2code = [EMPTY_TUPLE, TUPLE1, TUPLE2, TUPLE3]# Protocol 3 (Python 3.x)BINBYTES       = b'B'   # push bytes; counted binary string argumentSHORT_BINBYTES = b'C'   #  "     "   ;    "      "       "      " < 256 bytes# Protocol 4SHORT_BINUNICODE = b'\x8c'  # push short string; UTF-8 length < 256 bytesBINUNICODE8      = b'\x8d'  # push very long stringBINBYTES8        = b'\x8e'  # push very long bytes stringEMPTY_SET        = b'\x8f'  # push empty set on the stackADDITEMS         = b'\x90'  # modify set by adding topmost stack itemsFROZENSET        = b'\x91'  # build frozenset from topmost stack itemsNEWOBJ_EX        = b'\x92'  # like NEWOBJ but work with keyword only argumentsSTACK_GLOBAL     = b'\x93'  # same as GLOBAL but using names on the stacksMEMOIZE          = b'\x94'  # store top of the stack in memoFRAME            = b'\x95'  # indicate the beginning of a new frame__all__.extend([x for x in dir() if re.match("[A-Z][A-Z0-9_]+$", x)])class _Framer:    _FRAME_SIZE_TARGET = 64 * 1024    def __init__(self, file_write):        self.file_write = file_write        self.current_frame = None    def start_framing(self):        self.current_frame = io.BytesIO()    def end_framing(self):        if self.current_frame and self.current_frame.tell() > 0:            self.commit_frame(force=True)            self.current_frame = None    def commit_frame(self, force=False):        if self.current_frame:            f = self.current_frame            if f.tell() >= self._FRAME_SIZE_TARGET or force:                with f.getbuffer() as data:                    n = len(data)                    write = self.file_write                    write(FRAME)                    write(pack("
': raise AttributeError("Can't get local attribute {!r} on {!r}" .format(name, obj)) try: parent = obj obj = getattr(obj, subpath) except AttributeError: raise AttributeError("Can't get attribute {!r} on {!r}" .format(name, obj)) return obj, parentdef whichmodule(obj, name): """Find the module an object belong to.""" module_name = getattr(obj, '__module__', None) if module_name is not None: return module_name # Protect the iteration by using a list copy of sys.modules against dynamic # modules that trigger imports of other modules upon calls to getattr. for module_name, module in list(sys.modules.items()): if module_name == '__main__' or module is None: continue try: if _getattribute(module, name)[0] is obj: return module_name except AttributeError: pass return '__main__'def encode_long(x): r"""Encode a long to a two's complement little-endian binary string. Note that 0 is a special case, returning an empty string, to save a byte in the LONG1 pickling context. >>> encode_long(0) b'' >>> encode_long(255) b'\xff\x00' >>> encode_long(32767) b'\xff\x7f' >>> encode_long(-256) b'\x00\xff' >>> encode_long(-32768) b'\x00\x80' >>> encode_long(-128) b'\x80' >>> encode_long(127) b'\x7f' >>> """ if x == 0: return b'' nbytes = (x.bit_length() >> 3) + 1 result = x.to_bytes(nbytes, byteorder='little', signed=True) if x < 0 and nbytes > 1: if result[-1] == 0xff and (result[-2] & 0x80) != 0: result = result[:-1] return resultdef decode_long(data): r"""Decode a long from a two's complement little-endian binary string. >>> decode_long(b'') 0 >>> decode_long(b"\xff\x00") 255 >>> decode_long(b"\xff\x7f") 32767 >>> decode_long(b"\x00\xff") -256 >>> decode_long(b"\x00\x80") -32768 >>> decode_long(b"\x80") -128 >>> decode_long(b"\x7f") 127 """ return int.from_bytes(data, byteorder='little', signed=True)# Pickling machineryclass _Pickler: def __init__(self, file, protocol=None, *, fix_imports=True): """This takes a binary file for writing a pickle data stream. The optional *protocol* argument tells the pickler to use the given protocol; supported protocols are 0, 1, 2, 3 and 4. The default protocol is 3; a backward-incompatible protocol designed for Python 3. Specifying a negative protocol version selects the highest protocol version supported. The higher the protocol used, the more recent the version of Python needed to read the pickle produced. The *file* argument must have a write() method that accepts a single bytes argument. It can thus be a file object opened for binary writing, an io.BytesIO instance, or any other custom object that meets this interface. If *fix_imports* is True and *protocol* is less than 3, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2. """ if protocol is None: protocol = DEFAULT_PROTOCOL if protocol < 0: protocol = HIGHEST_PROTOCOL elif not 0 <= protocol <= HIGHEST_PROTOCOL: raise ValueError("pickle protocol must be <= %d" % HIGHEST_PROTOCOL) try: self._file_write = file.write except AttributeError: raise TypeError("file must have a 'write' attribute") self.framer = _Framer(self._file_write) self.write = self.framer.write self.memo = {} self.proto = int(protocol) self.bin = protocol >= 1 self.fast = 0 self.fix_imports = fix_imports and protocol < 3 def clear_memo(self): """Clears the pickler's "memo". The memo is the data structure that remembers which objects the pickler has already seen, so that shared or recursive objects are pickled by reference and not by value. This method is useful when re-using picklers. """ self.memo.clear() def dump(self, obj): """Write a pickled representation of obj to the open file.""" # Check whether Pickler was initialized correctly. This is # only needed to mimic the behavior of _pickle.Pickler.dump(). if not hasattr(self, "_file_write"): raise PicklingError("Pickler.__init__() was not called by " "%s.__init__()" % (self.__class__.__name__,)) if self.proto >= 2: self.write(PROTO + pack("
= 4: self.framer.start_framing() self.save(obj) self.write(STOP) self.framer.end_framing() def memoize(self, obj): """Store an object in the memo.""" # The Pickler memo is a dictionary mapping object ids to 2-tuples # that contain the Unpickler memo key and the object being memoized. # The memo key is written to the pickle and will become # the key in the Unpickler's memo. The object is stored in the # Pickler memo so that transient objects are kept alive during # pickling. # The use of the Unpickler memo length as the memo key is just a # convention. The only requirement is that the memo values be unique. # But there appears no advantage to any other scheme, and this # scheme allows the Unpickler memo to be implemented as a plain (but # growable) array, indexed by memo key. if self.fast: return assert id(obj) not in self.memo idx = len(self.memo) self.write(self.put(idx)) self.memo[id(obj)] = idx, obj # Return a PUT (BINPUT, LONG_BINPUT) opcode string, with argument i. def put(self, idx): if self.proto >= 4: return MEMOIZE elif self.bin: if idx < 256: return BINPUT + pack("
<= 5): raise PicklingError("Tuple returned by %s must have " "two to five elements" % reduce) # Save the reduce() output and finally memoize the object self.save_reduce(obj=obj, *rv) def persistent_id(self, obj): # This exists so a subclass can override it return None def save_pers(self, pid): # Save a persistent id reference if self.bin: self.save(pid, save_persistent_id=False) self.write(BINPERSID) else: self.write(PERSID + str(pid).encode("ascii") + b'\n') def save_reduce(self, func, args, state=None, listitems=None, dictitems=None, obj=None): # This API is called by some subclasses if not isinstance(args, tuple): raise PicklingError("args from save_reduce() must be a tuple") if not callable(func): raise PicklingError("func from save_reduce() must be callable") save = self.save write = self.write func_name = getattr(func, "__name__", "") if self.proto >= 4 and func_name == "__newobj_ex__": cls, args, kwargs = args if not hasattr(cls, "__new__"): raise PicklingError("args[0] from {} args has no __new__" .format(func_name)) if obj is not None and cls is not obj.__class__: raise PicklingError("args[0] from {} args has the wrong class" .format(func_name)) save(cls) save(args) save(kwargs) write(NEWOBJ_EX) elif self.proto >= 2 and func_name == "__newobj__": # A __reduce__ implementation can direct protocol 2 or newer to # use the more efficient NEWOBJ opcode, while still # allowing protocol 0 and 1 to work normally. For this to # work, the function returned by __reduce__ should be # called __newobj__, and its first argument should be a # class. The implementation for __newobj__ # should be as follows, although pickle has no way to # verify this: # # def __newobj__(cls, *args): # return cls.__new__(cls, *args) # # Protocols 0 and 1 will pickle a reference to __newobj__, # while protocol 2 (and above) will pickle a reference to # cls, the remaining args tuple, and the NEWOBJ code, # which calls cls.__new__(cls, *args) at unpickling time # (see load_newobj below). If __reduce__ returns a # three-tuple, the state from the third tuple item will be # pickled regardless of the protocol, calling __setstate__ # at unpickling time (see load_build below). # # Note that no standard __newobj__ implementation exists; # you have to provide your own. This is to enforce # compatibility with Python 2.2 (pickles written using # protocol 0 or 1 in Python 2.3 should be unpicklable by # Python 2.2). cls = args[0] if not hasattr(cls, "__new__"): raise PicklingError( "args[0] from __newobj__ args has no __new__") if obj is not None and cls is not obj.__class__: raise PicklingError( "args[0] from __newobj__ args has the wrong class") args = args[1:] save(cls) save(args) write(NEWOBJ) else: save(func) save(args) write(REDUCE) if obj is not None: # If the object is already in the memo, this means it is # recursive. In this case, throw away everything we put on the # stack, and fetch the object back from the memo. if id(obj) in self.memo: write(POP + self.get(self.memo[id(obj)][0])) else: self.memoize(obj) # More new special cases (that work with older protocols as # well): when __reduce__ returns a tuple with 4 or 5 items, # the 4th and 5th item should be iterators that provide list # items and dict items (as (key, value) tuples), or None. if listitems is not None: self._batch_appends(listitems) if dictitems is not None: self._batch_setitems(dictitems) if state is not None: save(state) write(BUILD) # Methods below this point are dispatched through the dispatch table dispatch = {} def save_none(self, obj): self.write(NONE) dispatch[type(None)] = save_none def save_bool(self, obj): if self.proto >= 2: self.write(NEWTRUE if obj else NEWFALSE) else: self.write(TRUE if obj else FALSE) dispatch[bool] = save_bool def save_long(self, obj): if self.bin: # If the int is small enough to fit in a signed 4-byte 2's-comp # format, we can store it more efficiently than the general # case. # First one- and two-byte unsigned ints: if obj >= 0: if obj <= 0xff: self.write(BININT1 + pack("
<= 0x7fffffff: self.write(BININT + pack("
= 2: encoded = encode_long(obj) n = len(encoded) if n < 256: self.write(LONG1 + pack("
d', obj)) else: self.write(FLOAT + repr(obj).encode("ascii") + b'\n') dispatch[float] = save_float def save_bytes(self, obj): if self.proto < 3: if not obj: # bytes object is empty self.save_reduce(bytes, (), obj=obj) else: self.save_reduce(codecs.encode, (str(obj, 'latin1'), 'latin1'), obj=obj) return n = len(obj) if n <= 0xff: self.write(SHORT_BINBYTES + pack("
0xffffffff and self.proto >= 4: self.write(BINBYTES8 + pack("
= 4: self.write(SHORT_BINUNICODE + pack("
0xffffffff and self.proto >= 4: self.write(BINUNICODE8 + pack("
= 2: for element in obj: save(element) # Subtle. Same as in the big comment below. if id(obj) in memo: get = self.get(memo[id(obj)][0]) self.write(POP * n + get) else: self.write(_tuplesize2code[n]) self.memoize(obj) return # proto 0 or proto 1 and tuple isn't empty, or proto > 1 and tuple # has more than 3 elements. write = self.write write(MARK) for element in obj: save(element) if id(obj) in memo: # Subtle. d was not in memo when we entered save_tuple(), so # the process of saving the tuple's elements must have saved # the tuple itself: the tuple is recursive. The proper action # now is to throw away everything we put on the stack, and # simply GET the tuple (it's already constructed). This check # could have been done in the "for element" loop instead, but # recursive tuples are a rare thing. get = self.get(memo[id(obj)][0]) if self.bin: write(POP_MARK + get) else: # proto 0 -- POP_MARK not available write(POP * (n+1) + get) return # No recursion. write(TUPLE) self.memoize(obj) dispatch[tuple] = save_tuple def save_list(self, obj): if self.bin: self.write(EMPTY_LIST) else: # proto 0 -- can't use EMPTY_LIST self.write(MARK + LIST) self.memoize(obj) self._batch_appends(obj) dispatch[list] = save_list _BATCHSIZE = 1000 def _batch_appends(self, items): # Helper to batch up APPENDS sequences save = self.save write = self.write if not self.bin: for x in items: save(x) write(APPEND) return it = iter(items) while True: tmp = list(islice(it, self._BATCHSIZE)) n = len(tmp) if n > 1: write(MARK) for x in tmp: save(x) write(APPENDS) elif n: save(tmp[0]) write(APPEND) # else tmp is empty, and we're done if n < self._BATCHSIZE: return def save_dict(self, obj): if self.bin: self.write(EMPTY_DICT) else: # proto 0 -- can't use EMPTY_DICT self.write(MARK + DICT) self.memoize(obj) self._batch_setitems(obj.items()) dispatch[dict] = save_dict if PyStringMap is not None: dispatch[PyStringMap] = save_dict def _batch_setitems(self, items): # Helper to batch up SETITEMS sequences; proto >= 1 only save = self.save write = self.write if not self.bin: for k, v in items: save(k) save(v) write(SETITEM) return it = iter(items) while True: tmp = list(islice(it, self._BATCHSIZE)) n = len(tmp) if n > 1: write(MARK) for k, v in tmp: save(k) save(v) write(SETITEMS) elif n: k, v = tmp[0] save(k) save(v) write(SETITEM) # else tmp is empty, and we're done if n < self._BATCHSIZE: return def save_set(self, obj): save = self.save write = self.write if self.proto < 4: self.save_reduce(set, (list(obj),), obj=obj) return write(EMPTY_SET) self.memoize(obj) it = iter(obj) while True: batch = list(islice(it, self._BATCHSIZE)) n = len(batch) if n > 0: write(MARK) for item in batch: save(item) write(ADDITEMS) if n < self._BATCHSIZE: return dispatch[set] = save_set def save_frozenset(self, obj): save = self.save write = self.write if self.proto < 4: self.save_reduce(frozenset, (list(obj),), obj=obj) return write(MARK) for item in obj: save(item) if id(obj) in self.memo: # If the object is already in the memo, this means it is # recursive. In this case, throw away everything we put on the # stack, and fetch the object back from the memo. write(POP_MARK + self.get(self.memo[id(obj)][0])) return write(FROZENSET) self.memoize(obj) dispatch[frozenset] = save_frozenset def save_global(self, obj, name=None): write = self.write memo = self.memo if name is None: name = getattr(obj, '__qualname__', None) if name is None: name = obj.__name__ module_name = whichmodule(obj, name) try: __import__(module_name, level=0) module = sys.modules[module_name] obj2, parent = _getattribute(module, name) except (ImportError, KeyError, AttributeError): raise PicklingError( "Can't pickle %r: it's not found as %s.%s" % (obj, module_name, name)) else: if obj2 is not obj: raise PicklingError( "Can't pickle %r: it's not the same object as %s.%s" % (obj, module_name, name)) if self.proto >= 2: code = _extension_registry.get((module_name, name)) if code: assert code > 0 if code <= 0xff: write(EXT1 + pack("
= 3. if self.proto >= 4: self.save(module_name) self.save(name) write(STACK_GLOBAL) elif parent is not module: self.save_reduce(getattr, (parent, lastname)) elif self.proto >= 3: write(GLOBAL + bytes(module_name, "utf-8") + b'\n' + bytes(name, "utf-8") + b'\n') else: if self.fix_imports: r_name_mapping = _compat_pickle.REVERSE_NAME_MAPPING r_import_mapping = _compat_pickle.REVERSE_IMPORT_MAPPING if (module_name, name) in r_name_mapping: module_name, name = r_name_mapping[(module_name, name)] elif module_name in r_import_mapping: module_name = r_import_mapping[module_name] try: write(GLOBAL + bytes(module_name, "ascii") + b'\n' + bytes(name, "ascii") + b'\n') except UnicodeEncodeError: raise PicklingError( "can't pickle global identifier '%s.%s' using " "pickle protocol %i" % (module, name, self.proto)) self.memoize(obj) def save_type(self, obj): if obj is type(None): return self.save_reduce(type, (None,), obj=obj) elif obj is type(NotImplemented): return self.save_reduce(type, (NotImplemented,), obj=obj) elif obj is type(...): return self.save_reduce(type, (...,), obj=obj) return self.save_global(obj) dispatch[FunctionType] = save_global dispatch[type] = save_type# Unpickling machineryclass _Unpickler: def __init__(self, file, *, fix_imports=True, encoding="ASCII", errors="strict"): """This takes a binary file for reading a pickle data stream. The protocol version of the pickle is detected automatically, so no proto argument is needed. The argument *file* must have two methods, a read() method that takes an integer argument, and a readline() method that requires no arguments. Both methods should return bytes. Thus *file* can be a binary file object opened for reading, an io.BytesIO object, or any other custom object that meets this interface. The file-like object must have two methods, a read() method that takes an integer argument, and a readline() method that requires no arguments. Both methods should return bytes. Thus file-like object can be a binary file object opened for reading, a BytesIO object, or any other custom object that meets this interface. Optional keyword arguments are *fix_imports*, *encoding* and *errors*, which are used to control compatibility support for pickle stream generated by Python 2. If *fix_imports* is True, pickle will try to map the old Python 2 names to the new names used in Python 3. The *encoding* and *errors* tell pickle how to decode 8-bit string instances pickled by Python 2; these default to 'ASCII' and 'strict', respectively. *encoding* can be 'bytes' to read theses 8-bit string instances as bytes objects. """ self._file_readline = file.readline self._file_read = file.read self.memo = {} self.encoding = encoding self.errors = errors self.proto = 0 self.fix_imports = fix_imports def load(self): """Read a pickled object representation from the open file. Return the reconstituted object hierarchy specified in the file. """ # Check whether Unpickler was initialized correctly. This is # only needed to mimic the behavior of _pickle.Unpickler.dump(). if not hasattr(self, "_file_read"): raise UnpicklingError("Unpickler.__init__() was not called by " "%s.__init__()" % (self.__class__.__name__,)) self._unframer = _Unframer(self._file_read, self._file_readline) self.read = self._unframer.read self.readline = self._unframer.readline self.mark = object() # any new unique object self.stack = [] self.append = self.stack.append self.proto = 0 read = self.read dispatch = self.dispatch try: while True: key = read(1) if not key: raise EOFError assert isinstance(key, bytes_types) dispatch[key[0]](self) except _Stop as stopinst: return stopinst.value # Return largest index k such that self.stack[k] is self.mark. # If the stack doesn't contain a mark, eventually raises IndexError. # This could be sped by maintaining another stack, of indices at which # the mark appears. For that matter, the latter stack would suffice, # and we wouldn't need to push mark objects on self.stack at all. # Doing so is probably a good thing, though, since if the pickle is # corrupt (or hostile) we may get a clue from finding self.mark embedded # in unpickled objects. def marker(self): stack = self.stack mark = self.mark k = len(stack)-1 while stack[k] is not mark: k = k-1 return k def persistent_load(self, pid): raise UnpicklingError("unsupported persistent id encountered") dispatch = {} def load_proto(self): proto = self.read(1)[0] if not 0 <= proto <= HIGHEST_PROTOCOL: raise ValueError("unsupported pickle protocol: %d" % proto) self.proto = proto dispatch[PROTO[0]] = load_proto def load_frame(self): frame_size, = unpack('
sys.maxsize: raise ValueError("frame size > sys.maxsize: %d" % frame_size) self._unframer.load_frame(frame_size) dispatch[FRAME[0]] = load_frame def load_persid(self): pid = self.readline()[:-1].decode("ascii") self.append(self.persistent_load(pid)) dispatch[PERSID[0]] = load_persid def load_binpersid(self): pid = self.stack.pop() self.append(self.persistent_load(pid)) dispatch[BINPERSID[0]] = load_binpersid def load_none(self): self.append(None) dispatch[NONE[0]] = load_none def load_false(self): self.append(False) dispatch[NEWFALSE[0]] = load_false def load_true(self): self.append(True) dispatch[NEWTRUE[0]] = load_true def load_int(self): data = self.readline() if data == FALSE[1:]: val = False elif data == TRUE[1:]: val = True else: val = int(data, 0) self.append(val) dispatch[INT[0]] = load_int def load_binint(self): self.append(unpack('
d', self.read(8))[0]) dispatch[BINFLOAT[0]] = load_binfloat def _decode_string(self, value): # Used to allow strings from Python 2 to be decoded either as # bytes or Unicode strings. This should be used only with the # STRING, BINSTRING and SHORT_BINSTRING opcodes. if self.encoding == "bytes": return value else: return value.decode(self.encoding, self.errors) def load_string(self): data = self.readline()[:-1] # Strip outermost quotes if len(data) >= 2 and data[0] == data[-1] and data[0] in b'"\'': data = data[1:-1] else: raise UnpicklingError("the STRING opcode argument must be quoted") self.append(self._decode_string(codecs.escape_decode(data)[0])) dispatch[STRING[0]] = load_string def load_binstring(self): # Deprecated BINSTRING uses signed 32-bit length len, = unpack('
maxsize: raise UnpicklingError("BINBYTES exceeds system's maximum size " "of %d bytes" % maxsize) self.append(self.read(len)) dispatch[BINBYTES[0]] = load_binbytes def load_unicode(self): self.append(str(self.readline()[:-1], 'raw-unicode-escape')) dispatch[UNICODE[0]] = load_unicode def load_binunicode(self): len, = unpack('
maxsize: raise UnpicklingError("BINUNICODE exceeds system's maximum size " "of %d bytes" % maxsize) self.append(str(self.read(len), 'utf-8', 'surrogatepass')) dispatch[BINUNICODE[0]] = load_binunicode def load_binunicode8(self): len, = unpack('
maxsize: raise UnpicklingError("BINUNICODE8 exceeds system's maximum size " "of %d bytes" % maxsize) self.append(str(self.read(len), 'utf-8', 'surrogatepass')) dispatch[BINUNICODE8[0]] = load_binunicode8 def load_binbytes8(self): len, = unpack('
maxsize: raise UnpicklingError("BINBYTES8 exceeds system's maximum size " "of %d bytes" % maxsize) self.append(self.read(len)) dispatch[BINBYTES8[0]] = load_binbytes8 def load_short_binstring(self): len = self.read(1)[0] data = self.read(len) self.append(self._decode_string(data)) dispatch[SHORT_BINSTRING[0]] = load_short_binstring def load_short_binbytes(self): len = self.read(1)[0] self.append(self.read(len)) dispatch[SHORT_BINBYTES[0]] = load_short_binbytes def load_short_binunicode(self): len = self.read(1)[0] self.append(str(self.read(len), 'utf-8', 'surrogatepass')) dispatch[SHORT_BINUNICODE[0]] = load_short_binunicode def load_tuple(self): k = self.marker() self.stack[k:] = [tuple(self.stack[k+1:])] dispatch[TUPLE[0]] = load_tuple def load_empty_tuple(self): self.append(()) dispatch[EMPTY_TUPLE[0]] = load_empty_tuple def load_tuple1(self): self.stack[-1] = (self.stack[-1],) dispatch[TUPLE1[0]] = load_tuple1 def load_tuple2(self): self.stack[-2:] = [(self.stack[-2], self.stack[-1])] dispatch[TUPLE2[0]] = load_tuple2 def load_tuple3(self): self.stack[-3:] = [(self.stack[-3], self.stack[-2], self.stack[-1])] dispatch[TUPLE3[0]] = load_tuple3 def load_empty_list(self): self.append([]) dispatch[EMPTY_LIST[0]] = load_empty_list def load_empty_dictionary(self): self.append({}) dispatch[EMPTY_DICT[0]] = load_empty_dictionary def load_empty_set(self): self.append(set()) dispatch[EMPTY_SET[0]] = load_empty_set def load_frozenset(self): k = self.marker() self.stack[k:] = [frozenset(self.stack[k+1:])] dispatch[FROZENSET[0]] = load_frozenset def load_list(self): k = self.marker() self.stack[k:] = [self.stack[k+1:]] dispatch[LIST[0]] = load_list def load_dict(self): k = self.marker() items = self.stack[k+1:] d = {items[i]: items[i+1] for i in range(0, len(items), 2)} self.stack[k:] = [d] dispatch[DICT[0]] = load_dict # INST and OBJ differ only in how they get a class object. It's not # only sensible to do the rest in a common routine, the two routines # previously diverged and grew different bugs. # klass is the class to instantiate, and k points to the topmost mark # object, following which are the arguments for klass.__init__. def _instantiate(self, klass, k): args = tuple(self.stack[k+1:]) del self.stack[k:] if (args or not isinstance(klass, type) or hasattr(klass, "__getinitargs__")): try: value = klass(*args) except TypeError as err: raise TypeError("in constructor for %s: %s" % (klass.__name__, str(err)), sys.exc_info()[2]) else: value = klass.__new__(klass) self.append(value) def load_inst(self): module = self.readline()[:-1].decode("ascii") name = self.readline()[:-1].decode("ascii") klass = self.find_class(module, name) self._instantiate(klass, self.marker()) dispatch[INST[0]] = load_inst def load_obj(self): # Stack is ... markobject classobject arg1 arg2 ... k = self.marker() klass = self.stack.pop(k+1) self._instantiate(klass, k) dispatch[OBJ[0]] = load_obj def load_newobj(self): args = self.stack.pop() cls = self.stack.pop() obj = cls.__new__(cls, *args) self.append(obj) dispatch[NEWOBJ[0]] = load_newobj def load_newobj_ex(self): kwargs = self.stack.pop() args = self.stack.pop() cls = self.stack.pop() obj = cls.__new__(cls, *args, **kwargs) self.append(obj) dispatch[NEWOBJ_EX[0]] = load_newobj_ex def load_global(self): module = self.readline()[:-1].decode("utf-8") name = self.readline()[:-1].decode("utf-8") klass = self.find_class(module, name) self.append(klass) dispatch[GLOBAL[0]] = load_global def load_stack_global(self): name = self.stack.pop() module = self.stack.pop() if type(name) is not str or type(module) is not str: raise UnpicklingError("STACK_GLOBAL requires str") self.append(self.find_class(module, name)) dispatch[STACK_GLOBAL[0]] = load_stack_global def load_ext1(self): code = self.read(1)[0] self.get_extension(code) dispatch[EXT1[0]] = load_ext1 def load_ext2(self): code, = unpack('
= 4: return _getattribute(sys.modules[module], name)[0] else: return getattr(sys.modules[module], name) def load_reduce(self): stack = self.stack args = stack.pop() func = stack[-1] stack[-1] = func(*args) dispatch[REDUCE[0]] = load_reduce def load_pop(self): del self.stack[-1] dispatch[POP[0]] = load_pop def load_pop_mark(self): k = self.marker() del self.stack[k:] dispatch[POP_MARK[0]] = load_pop_mark def load_dup(self): self.append(self.stack[-1]) dispatch[DUP[0]] = load_dup def load_get(self): i = int(self.readline()[:-1]) self.append(self.memo[i]) dispatch[GET[0]] = load_get def load_binget(self): i = self.read(1)[0] self.append(self.memo[i]) dispatch[BINGET[0]] = load_binget def load_long_binget(self): i, = unpack('
maxsize: raise ValueError("negative LONG_BINPUT argument") self.memo[i] = self.stack[-1] dispatch[LONG_BINPUT[0]] = load_long_binput def load_memoize(self): memo = self.memo memo[len(memo)] = self.stack[-1] dispatch[MEMOIZE[0]] = load_memoize def load_append(self): stack = self.stack value = stack.pop() list = stack[-1] list.append(value) dispatch[APPEND[0]] = load_append def load_appends(self): stack = self.stack mark = self.marker() list_obj = stack[mark - 1] items = stack[mark + 1:] if isinstance(list_obj, list): list_obj.extend(items) else: append = list_obj.append for item in items: append(item) del stack[mark:] dispatch[APPENDS[0]] = load_appends def load_setitem(self): stack = self.stack value = stack.pop() key = stack.pop() dict = stack[-1] dict[key] = value dispatch[SETITEM[0]] = load_setitem def load_setitems(self): stack = self.stack mark = self.marker() dict = stack[mark - 1] for i in range(mark + 1, len(stack), 2): dict[stack[i]] = stack[i + 1] del stack[mark:] dispatch[SETITEMS[0]] = load_setitems def load_additems(self): stack = self.stack mark = self.marker() set_obj = stack[mark - 1] items = stack[mark + 1:] if isinstance(set_obj, set): set_obj.update(items) else: add = set_obj.add for item in items: add(item) del stack[mark:] dispatch[ADDITEMS[0]] = load_additems def load_build(self): stack = self.stack state = stack.pop() inst = stack[-1] setstate = getattr(inst, "__setstate__", None) if setstate is not None: setstate(state) return slotstate = None if isinstance(state, tuple) and len(state) == 2: state, slotstate = state if state: inst_dict = inst.__dict__ intern = sys.intern for k, v in state.items(): if type(k) is str: inst_dict[intern(k)] = v else: inst_dict[k] = v if slotstate: for k, v in slotstate.items(): setattr(inst, k, v) dispatch[BUILD[0]] = load_build def load_mark(self): self.append(self.mark) dispatch[MARK[0]] = load_mark def load_stop(self): value = self.stack.pop() raise _Stop(value) dispatch[STOP[0]] = load_stop# Shorthandsdef _dump(obj, file, protocol=None, *, fix_imports=True): _Pickler(file, protocol, fix_imports=fix_imports).dump(obj)def _dumps(obj, protocol=None, *, fix_imports=True): f = io.BytesIO() _Pickler(f, protocol, fix_imports=fix_imports).dump(obj) res = f.getvalue() assert isinstance(res, bytes_types) return resdef _load(file, *, fix_imports=True, encoding="ASCII", errors="strict"): return _Unpickler(file, fix_imports=fix_imports, encoding=encoding, errors=errors).load()def _loads(s, *, fix_imports=True, encoding="ASCII", errors="strict"): if isinstance(s, str): raise TypeError("Can't load pickle from unicode string") file = io.BytesIO(s) return _Unpickler(file, fix_imports=fix_imports, encoding=encoding, errors=errors).load()# Use the faster _pickle if possibletry: from _pickle import ( PickleError, PicklingError, UnpicklingError, Pickler, Unpickler, dump, dumps, load, loads )except ImportError: Pickler, Unpickler = _Pickler, _Unpickler dump, dumps, load, loads = _dump, _dumps, _load, _loads# Doctestdef _test(): import doctest return doctest.testmod()if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( description='display contents of the pickle files') parser.add_argument( 'pickle_file', type=argparse.FileType('br'), nargs='*', help='the pickle file') parser.add_argument( '-t', '--test', action='store_true', help='run self-test suite') parser.add_argument( '-v', action='store_true', help='run verbosely; only affects self-test run') args = parser.parse_args() if args.test: _test() else: if not args.pickle_file: parser.print_help() else: import pprint for f in args.pickle_file: obj = load(f) pprint.pprint(obj)

转载于:https://www.cnblogs.com/gengcx/p/7331120.html

你可能感兴趣的文章
Linux服务器间建立双向信任-无密码相互访问
查看>>
【COCOS2D-HTML5 开发之二】cocos2d-html5项目定义成员,局部变量,函数笔记随笔
查看>>
rsync与inotify
查看>>
将博客搬至CSDN
查看>>
使用docker镜像玩转steam挂卡
查看>>
修改root密码方式及克隆虚拟机
查看>>
hadoop技术入门学习之发行版选择
查看>>
spring-boot官方参考文档(使用spring-boot)(2.2)
查看>>
scrapy之异步写入数据库
查看>>
贪吃蛇
查看>>
现代图像处理技术试题
查看>>
ffmpeg的使用
查看>>
Oracle 白皮书-Oracle Data Guard 快速启动故障切换指南(1)
查看>>
通过案例学调优之--和 SHARED POOL 相关的主要 Latch
查看>>
sql server 数据库索引
查看>>
[spring-framework]Spring中集成RMI(远程方法调用)
查看>>
活动目录实战之十二 windows 2008 r2 AD 备份和还原 (下)-授权还原
查看>>
SQL2012群集
查看>>
I/O重定向
查看>>
VIM配置文件
查看>>